Non-residential building occupancy modeling. Part II. Occupancy classification So dataset was taken from this place . The dataset comprised of different sources: surveys, data logging from sensors, weather, environment variables. Total feature list consist of 118 features and can be grouped as general (occupancy, time), environment (indoor, outdoor), personal characteristics (age, office type, accepted sensation range etc), comfort/productivity/satisfaction, behavior (clothing, window, interaction with thermostat etc ), personal values (choices on different set points). It contains data on 24 occupants whether it private office or joint one, the first task is to implement binary classification of each occupant using some input data from sensors and time. For rapid protoyping I will use python Tensor Flow wrapper Keras along Anaconda framework. First, loading all required libraries from keras.models import Sequential from keras.layers import Dense import numpy ...
Life, Study, Work and curiosity
Comments
Post a Comment